Ebola virus sequencing protocol

Nanopore | amplicon | native barcoding

Document: ARTIC-EBOV-seqSOP-v2.0.0
Creation Date: 2018-05-17
Revision Date: 2019-09-25
Forked from: doi:10.1038/nprot.2017.066
Author: Luke Meredith, Josh Quick
Licence: Creative Commons Attribution 4.0 International License
Overview: The following protocol is adapted from the methods of Quick et al. (2017) Nature Protocols 12: 1261–1276 doi:10.1038/nprot.2017.066 and covers primers, amplicon preparation and clean-up, then uses a single-tube protocol to barcode and adaptor ligate the library, before running minION.


This document is part of the Ebola virus Nanopore sequencing protocol package:
http://artic.network/ebov/
Ebola primer scheme:
https://github.com/artic-network/primer-schemes/tree/master/ZaireEbola/V3
Ebola virus Nanopore sequencing protocol:
http://artic.network/ebov/ebov-seq-sop.html
Ebola virus Nanopore sequencing kit-list:
http://artic.network/ebov/ebov-seq-kit.html




Funded by the Wellcome Trust
Collaborators Award 206298/Z/17/Z --- ARTIC network

Preparation

Equipment required:

2 Portable nucleic acid preparation hood or equivalent
1 12V vortex
1 Sprout portable centrifuge
1 P1000 Eppendorf pipette
1 P100 Eppendorf pipette
1 P10 Eppendorf pipette
1 1.5mL/0.6mL convertible tube rack
1 Quantus Fluorometer
1 miniPCR machine.
1 Heat block
1 Magnetic rack

Consumables required:

  SuperScript IV Reverse Transcriptase
  Q5 Hot Start High-Fidelity 2X Master Mix
  Ebola Zaire Primers V3
  NEBNext Ultra II End Repair/dA-Tailing Module
  Blunt/TA Ligase Master Mix
  Aline PCRCLEAN DX 50ml
  Nanopore Ligation Sequencing Kit 1D
  Nanopore Native Barcoding Expansion Kit
  Nanopore R9.4.1 Flow cell
  1.5mL Eppendorf Tubes
  0.2mL 8-strip Tubes
  50mL Falcon Tubes
  0.5ml PCR Tubes
  QuantiFluor ONE dsDNA System
  Nuclease-free water
  70% Ethanol
  P1000 pipette tips
  P100 pipette tips
  P10 long-reach pipette tips
  Paper towelling
  Clinical waste sharps containers

Safety, containment and contamination recommendations

  Back-tie hydrophobic lab gown
  Gloves
  UV light sterilizers
  MediPal Decontamination wipes
  DNAway and RNAse Zap reagent

Protocol

Part 1: cDNA synthesis with Superscript IV reverse transcriptase

NOTE ON HOOD PREPARATION: To prevent cross contamination of both the sample and other reagents, this should be carried out in the SAMPLE PREPARATION HOOD, which is pre-sterilised with UV and treated with MediPal wipes, DNAway and RNAseZap reagent. Wipe down the hood with each sequentially, allowing 5 minutes for drying between each. Pipettes should also be treated in the same way, and UV treated for 30 mins between library preparations.

  1. Set up the following reaction:

    50µM random hexamers   1µL
    10mM dNTPs mix (10mM each) 1µL  
    Template RNA 11µL  
    TOTAL 12µL  

NOTE: Viral RNA input from a clinical sample should be between Ct 18-35. If Ct is between 12-15, then dilute the sample 100-fold in water, if between 15-18 then dilute 10-fold in water. This will reduce the likelihood of PCR-inhibition.

  1. Gently mix (avoid vortexing) then pulse spin the tube to ensure maximum contact with the thermal cycler.
  2. Incubate the reaction as follows:

    Denaturation 65°C 5 mins
    Primer annealing Ice 1 mins
  3. Add the following to the annealed template RNA:

    SSIV Buffer   4µL
    100mM DTT 1µL  
    RNaseOUT RNase Inhibitor 1µL  
    SSIV Reverse Transcriptase 1µL  
    TOTAL 20µL  
  4. Gently mix (avoid vortexing) then pulse spin the tube to ensure maximum contact with the thermal cycler.
  5. Incubate the reaction as follows:

    Extension 42°C 90 mins
    Inactivation 70°C 10 mins
  6. cDNA is now ready for amplicon generation.

Part 2: Ebola Amplicon Preparation

NOTE ON HOOD PREPARATION: To prevent cross contamination of both the sample and other reagents, this should be carried out in the MASTERMIX HOOD, which is pre-sterilised with UV and treated with MediPal wipes, DNAway and RNAseZap reagent. Wipe down the hood with each sequentially, allowing 5 minutes for drying between each. Pipettes should also be treated in the same way, and UV treated for 30 mins between library preparations.

Primer dilution and preparation

  1. Ebola primers for this protocol were designed using Primal Scheme and generate overlapping 400nt amplicons. Primer names and dilutions are listed in the table below.

  2. Primers should be prepped and aliquoted PRIOR TO DEPARTURE in a STERILE PCR CABINET. At NO stage should primers or PCR reagents be anywhere near the template or amplicons until use.

  3. Resuspend lyophilised primers at a concentration of 100µM each

  4. Generate primer pool stocks by adding 5µL of each primer pair to a 1.5mL Eppendorf labelled “Pool 1, 100µM” or “Pool 2, 100µM”. Total volume should be 505µL of Pool 1 and 530µL of Pool 2. This is a 10x stock of each primer pool.

  5. Dilute this primer pool 1:10 in molecular grade water, to generate 10µM primer stocks. Recommend that multiple aliquots of each primer pool are made to account for any risks of degradation of contamination.

Name Sequence Name Sequence Pool [Stock]
Ebov-10-Pan_1_LEFT TGTGTGCGAATAACTATGAGGAAGA Ebov-10-Pan_1_RIGHT TTTCCAATGTTTTACCCCAAGCTTT 1 100µM
    Ebov-10-Pan_1_RIGHT_alt1 TTTCCAATGCTTTACCCCAAGCTTT 1 100µM
    Ebov-10-Pan_1_RIGHT_alt2 TTTCCAATGTTTTACCCCAAGTTTT 1 100µM
Ebov-10-Pan_2_LEFT CAAGCAAGATTGAGAATTAACCTTGGT Ebov-10-Pan_2_RIGHT ATCTCCCTGGTACGCATGATGA 2 100µM
Ebov-10-Pan_2_LEFT_alt1 CAAGCAAGATTGAGAATTAACCTTGAT Ebov-10-Pan_2_RIGHT_alt1 ATCTCCTTGGTACGCATGATGA 2 100µM
Ebov-10-Pan_3_LEFT GGCCTTTGAAGCAGGTGTTGAT Ebov-10-Pan_3_RIGHT TCAGTCCTTGCTCTGCATGTAC 1 100µM
Ebov-10-Pan_4_LEFT CCTTTGCAAGTCTATTCCTTCCGA Ebov-10-Pan_4_RIGHT CTGAGTGCAGCCTTAAAGGAGT 2 100µM
Ebov-10-Pan_4_LEFT_alt1 CTTTTGCAAGTCTATTCCTTCCGA     2 100µM
Ebov-10-Pan_5_LEFT AGTTCGTCTCCATCCTCTTGCA Ebov-10-Pan_5_RIGHT CTGGAAGCTGATTTCGTTCTTTTTCT 1 100µM
Ebov-10-Pan_6_LEFT GAGTCTCGCGAACTTGACCATC Ebov-10-Pan_6_RIGHT TCCTCGTCGTCCTCGTCTAGAT 2 100µM
Ebov-10-Pan_6_LEFT_alt1 GAATCTCGCGAACTTGACCATC Ebov-10-Pan_6_RIGHT_alt1 TCCTCATCGTCCTCGTCTAGAT 2 100µM
Ebov-10-Pan_7_LEFT AGCTACGGCGAATACCAGAGTT Ebov-10-Pan_7_RIGHT GTCCCTGTCCTGCTCTTCATCA 1 100µM
    Ebov-10-Pan_7_RIGHT_alt1 GTCCCTGTCCTGTTCTTCATCA 1 100µM
    Ebov-10-Pan_7_RIGHT_alt2 GTCCCTGTCCTGTTCTTCATCG 1 100µM
Ebov-10-Pan_8_LEFT TTAACGAAGAGGCAGACCCACT Ebov-10-Pan_8_RIGHT TTCCTCTTCAAGGGAGTCTGGA 2 100µM
Ebov-10-Pan_8_LEFT_alt1 TCAACGAAGAGGCAGACCCACT Ebov-10-Pan_8_RIGHT_alt1 TTCCTCTTCAAGGGAGTCCGGA 2 100µM
Ebov-10-Pan_9_LEFT GTGACAACACCCAGTCAGAACA Ebov-10-Pan_9_RIGHT TCTTCCTGTTTTCGTTCCTTGACT 1 100µM
Ebov-10-Pan_9_LEFT_alt1 GTGACAACACCCAGCCAGAACA Ebov-10-Pan_9_RIGHT_alt1 TCTTCCTGTTTGCGTTCCTTGACT 1 100µM
    Ebov-10-Pan_9_RIGHT_alt2 TCTTCCTGTTTGCGTTTCTTGACT 1 100µM
Ebov-10-Pan_10_LEFT ACAATGGGATGATTCAACCGACA Ebov-10-Pan_10_RIGHT TCGAGTGCTAGAGAATTCAATTGACG 2 100µM
Ebov-10-Pan_10_LEFT_alt1 ATAATGGGATGATTTAACCGACA     2 100µM
Ebov-10-Pan_11_LEFT ACCTACTAGCCTGCCCAACATT Ebov-10-Pan_11_RIGHT AATTGGGTCCGTTTGGGTTTGA 1 100µM
Ebov-10-Pan_11_LEFT_alt1 ACCTACTAGCCTACCCAACATT Ebov-10-Pan_11_RIGHT_alt1 AATTGGATCCGTTTGGGTTTGA 1 100µM
Ebov-10-Pan_12_LEFT CCCAAATGCAACAAACGAAGCC Ebov-10-Pan_12_RIGHT TCAATCTTACCCCGAATCGCAC 2 100µM
Ebov-10-Pan_12_LEFT_alt1 CCCAAATGCAACAAACAAAGCC Ebov-10-Pan_12_RIGHT_alt1 TCAATCTTACCCCGAATTGCAC 2 100µM
Ebov-10-Pan_13_LEFT TATTGGGCCGAACATGGTCAAC Ebov-10-Pan_13_RIGHT TGACAGGTGGAGCAGCATCTTG 1 100µM
Ebov-10-Pan_13_LEFT_alt1 TATTGGGCTGAACATGGTCAAC     1 100µM
Ebov-10-Pan_14_LEFT CATTCATGCTGAGTTCCAGGCC Ebov-10-Pan_14_RIGHT GCGAGATATGAACAATTTTATCTTGGTCG 2 100µM
    Ebov-10-Pan_14_RIGHT_alt1 GCGAGATAAGGACAATTTTATCTTGGTCG 2 100µM
    Ebov-10-Pan_14_RIGHT_alt2 GCGAGATAAGAACAATTTTATCTTGGTCG 2 100µM
Ebov-10-Pan_15_LEFT TGAGTATCAGCCCTGGATAATATAAGTCA Ebov-10-Pan_15_RIGHT TCGATGGAGTGTCCCCATTGAC 1 100µM
Ebov-10-Pan_15_LEFT_alt1 TGAGTATCAGCCCTAGATAATATAAGTCA Ebov-10-Pan_15_RIGHT_alt1 TCGATGGAGTGTCTCCATTGAC 1 100µM
Ebov-10-Pan_16_LEFT GCAACAGCAATACAGGCTTCCT Ebov-10-Pan_16_RIGHT GAAAGCCTGGTTTCCAATTCGC 2 100µM
Ebov-10-Pan_16_LEFT_alt1 GCAACAACAATACAGGCTTCCT Ebov-10-Pan_16_RIGHT_alt1 GAAGGCCTGGTTTCCAATTCGC 2 100µM
Ebov-10-Pan_17_LEFT CCACTTGTCAGAGTCAATCGGC Ebov-10-Pan_17_RIGHT GTTTCTGGCACTTCGATTCCCA 1 100µM
    Ebov-10-Pan_17_RIGHT_alt1 GTTTCTGGCACTTCGATACCCA 1 100µM
Ebov-10-Pan_18_LEFT AAAATCCAAGCAATAATGACTTCACTCC Ebov-10-Pan_18_RIGHT TTGATCAATTAAAAGTGTCTCCTCTAATGG 2 100µM
    Ebov-10-Pan_18_RIGHT_alt1 TCGATCAATTTAAAGTATCTCCTCTAATGG 2 100µM
    Ebov-10-Pan_18_RIGHT_alt2 TTGATCAATTAAAAGTATCTCCTCTAATAG 2 100µM
Ebov-10-Pan_19_LEFT AGATCCAGTTTTATAGAATCTTCTCAGGGA Ebov-10-Pan_19_RIGHT AGAAGGGCAATGTCTGTACTTGG 1 100µM
Ebov-10-Pan_19_LEFT_alt1 AGATCCAGTTTTACAGAATCTTCTCAGGGA Ebov-10-Pan_19_RIGHT_alt1 AGAAGGGCGATGTCTGTGCTTGG 1 100µM
Ebov-10-Pan_20_LEFT AGCCAGTGTGACTTGGATTGGA Ebov-10-Pan_20_RIGHT AGTTTGTCGACATCACTAACCTGT 2 100µM
    Ebov-10-Pan_20_RIGHT_alt1 AGTTTGTCGACATCACTAACTTGT 2 100µM
Ebov-10-Pan_21_LEFT AGAACATTTTCCATCCCACTTGGA Ebov-10-Pan_21_RIGHT AAGCACCCTCTTTATGGAAGGC 1 100µM
    Ebov-10-Pan_21_RIGHT_alt1 AAGCACCCTCTTTGTGGAAGGC 1 100µM
Ebov-10-Pan_22_LEFT TGCCGGTATGTGCACAAAGTAT Ebov-10-Pan_22_RIGHT ATATATTGTCTCATTCAGCTGGAGCA 2 100µM
Ebov-10-Pan_23_LEFT CGAGGTTGACAATTTGACCTACGT Ebov-10-Pan_23_RIGHT GCAAGGGTTGTTAGATGCGACA 1 100µM
    Ebov-10-Pan_23_RIGHT_alt1 GCAAGGGTTGTCAGATGCGACA 1 100µM
Ebov-10-Pan_24_LEFT TGCAATGGTTCAAGTGCACAGT Ebov-10-Pan_24_RIGHT CTGGCACTCTCTTCTCCGGTAT 2 100µM
Ebov-10-Pan_24_LEFT_alt1 TGCAATGGTTCAAGTGCACAAT     2 100µM
Ebov-10-Pan_25_LEFT ACCACAACAAGTCCCCAAAACC Ebov-10-Pan_25_RIGHT TAGCTCAGTTGTGGCTCTCAGG 1 100µM
    Ebov-10-Pan_25_RIGHT_alt1 TAGCTCGGTTGTGGCTCTCAGG 1 100µM
Ebov-10-Pan_26_LEFT ATCTGTGGGTTGAGACAGCTGG Ebov-10-Pan_26_RIGHT GCTTTTCCATGAAGCAATCTGAAGA 2 100µM
Ebov-10-Pan_26_LEFT_alt1 ATCTGTGGATTGAGGCAGCTGG Ebov-10-Pan_26_RIGHT_alt1 GCTTTGCCATGAAGCAATCTGAAGA 2 100µM
Ebov-10-Pan_26_LEFT_alt2 ATCTGTGGGTTGAGGCAGCTGG     2 100µM
Ebov-10-Pan_27_LEFT TGGAGTTACAGGCGTTATAATTGCA Ebov-10-Pan_27_RIGHT AAAGGCTTCTTTCCCTTGTCACT 1 100µM
Ebov-10-Pan_28_LEFT TCATCCTTGATTCTACAATCATGACAGT Ebov-10-Pan_28_RIGHT AGGTGCTGGAGGAACTGTTAATG 2 100µM
Ebov-10-Pan_28_LEFT_alt1 TCATCCTTGATTCTACAATCATAACAGT     2 100µM
Ebov-10-Pan_29_LEFT GAGTACCGTCAATCAAGGAGCG Ebov-10-Pan_29_RIGHT CACAGCACATAGAGTCAACAATGC 1 100µM
Ebov-10-Pan_30_LEFT GATCAAGACGGCAGAACACTGG Ebov-10-Pan_30_RIGHT ATCAGACCATGAGCATGTCCCC 2 100µM
Ebov-10-Pan_31_LEFT CTGCTGTCGTTGTTTCAGGGTT Ebov-10-Pan_31_RIGHT ATGGGATGGATCGTTGCTACCT 1 100µM
    Ebov-10-Pan_31_RIGHT_alt1 ATGGGATGGATCGTTGCTGCCT 1 100µM
    Ebov-10-Pan_31_RIGHT_alt2 ATGAGATGGATCGTTGCTACCT 1 100µM
Ebov-10-Pan_32_LEFT GCCAAGCATACCTCTTGCACAA Ebov-10-Pan_32_RIGHT TGGACTACCCTGAAATAGTACTTTGC 2 100µM
Ebov-10-Pan_33_LEFT TGCGGAGGTCTGATAAGAATAAACC Ebov-10-Pan_33_RIGHT TTCAACCTTGAAACCTTGCGCT 1 100µM
    Ebov-10-Pan_33_RIGHT_alt1 TTCAACTTTGAAACCTTGCGCT 1 100µM
Ebov-10-Pan_34_LEFT GCTGAAAAGAAGCTTACCTACAACG Ebov-10-Pan_34_RIGHT TCCTTGTCATTGACCATGCAGG 2 100µM
Ebov-10-Pan_34_LEFT_alt1 GTTGAAAAAAGGCCTACCTACAACG     2 100µM
Ebov-10-Pan_34_LEFT_alt2 GCTGAAAAGAAGCCCACCTACAACG     2 100µM
Ebov-10-Pan_35_LEFT GTGACTCACAAAGGAATGGCCC Ebov-10-Pan_35_RIGHT ACAATCCGTTGTAGTTCACGACA 1 100µM
    Ebov-10-Pan_35_RIGHT_alt1 ACAACCCGTTGTAGTTCACGACA 1 100µM
Ebov-10-Pan_36_LEFT TGCTGTCGTTGATTCGATCCAA Ebov-10-Pan_36_RIGHT AGCAGAGATGTCAAGATAACTATTGAGT 2 100µM
Ebov-10-Pan_37_LEFT ACACGAATGCAAAGTTTGATTCTTGA Ebov-10-Pan_37_RIGHT TGAAACCTAACACATGTGACCTGC 1 100µM
    Ebov-10-Pan_37_RIGHT_alt1 TGAAACCTAACACACGTGACCTGC 1 100µM
Ebov-10-Pan_38_LEFT CCCTCAAACAAGAGATTCCAAGACA Ebov-10-Pan_38_RIGHT ACAGTTGCGTAGTTGCGGATTA 2 100µM
Ebov-10-Pan_38_LEFT_alt1 CCCTCAAATAAGAGATTCCAAGACA     2 100µM
Ebov-10-Pan_38_LEFT_alt2 TCCTCAAATAAGAGATTCCAAGACA     2 100µM
Ebov-10-Pan_39_LEFT ACCTAGTCACTAGAGCTTGCGG Ebov-10-Pan_39_RIGHT ACATTTGATGTAAAAATTCATTGCCCTG 1 100µM
Ebov-10-Pan_40_LEFT GTGGGTGCTCAAGAAGACTGTG Ebov-10-Pan_40_RIGHT TGAGATTAGAGTTGTGTTGAATCGACA 2 100µM
Ebov-10-Pan_40_LEFT_alt1 GTGGGTGCTCAAGAGGACTGTG Ebov-10-Pan_40_RIGHT_alt1 TGAGATTAGAGTCGTGTTGAATCGACA 2 100µM
Ebov-10-Pan_41_LEFT AAGAAGCGGTTCAAGGGCATAC Ebov-10-Pan_41_RIGHT CTATGGAATTCACGGATCTTTTGAGC 1 100µM
Ebov-10-Pan_41_LEFT_alt1 AAGAAGCAGTTCAAGGGCATAC Ebov-10-Pan_41_RIGHT_alt1 CTATGGAATTCACGGATCTTTTGATC 1 100µM
Ebov-10-Pan_42_LEFT TGCATTTAGCTGTAAATCACACCCT Ebov-10-Pan_42_RIGHT AATCATTGGCAACGGAGGGAAT 2 100µM
    Ebov-10-Pan_42_RIGHT_alt1 AATCATTGGCAACGGGGGGAAT 2 100µM
Ebov-10-Pan_43_LEFT GTCAAGGATCTTGGTACAGTGTTACT Ebov-10-Pan_43_RIGHT TGAGAAAGAAAAGTTCCGATATTGTGGT 1 100µM
Ebov-10-Pan_43_LEFT_alt1 GCCAAGGGTCTTGGTACAGTGTTACT Ebov-10-Pan_43_RIGHT_alt1 TGAGAAAGAAAAATTCCGGTATTGTGGT 1 100µM
Ebov-10-Pan_43_LEFT_alt2 GTCAAGGGTCTTGGTACAGTGTTACT Ebov-10-Pan_43_RIGHT_alt2 TGAGAAAGAAAAATTCCGATATTGTGGT 1 100µM
Ebov-10-Pan_44_LEFT TTGAGAATGTTCTTTCCTACGCACA Ebov-10-Pan_44_RIGHT ACGGTTGCAATATTCTATAAAAGGTGC 2 100µM
Ebov-10-Pan_44_LEFT_alt1 TTGAGAATGTTCTTTCCTACGCGCA Ebov-10-Pan_44_RIGHT_alt1 ACGGTTGCAATATTCGATAAAAGGTGC 2 100µM
    Ebov-10-Pan_44_RIGHT_alt2 ACGGTTACAATATTCTATAAAAGGTGC 2 100µM
Ebov-10-Pan_45_LEFT CCACAGTTAGAGGGAGTAGCTTTG Ebov-10-Pan_45_RIGHT GCTCGTCTGCGTCAGTCTCTAA 1 100µM
Ebov-10-Pan_45_LEFT_alt1 CCACAGTTAGAGGGAGTAGTTTTG     1 100µM
Ebov-10-Pan_46_LEFT AAGTTACGCTCAGCTGTGATGG Ebov-10-Pan_46_RIGHT ATGGAAAGCTGCGGTTATCCTG 2 100µM
Ebov-10-Pan_47_LEFT TAGGCACTGCTTTTGAGCGATC Ebov-10-Pan_47_RIGHT CACAAAGTCAATGGCAGTGCAG 1 100µM
Ebov-10-Pan_47_LEFT_alt1 TAGGCACCGCTTTTGAGCGGTC     1 100µM
Ebov-10-Pan_47_LEFT_alt2 TAGGCACTGCTTTTGAACGATC     1 100µM
Ebov-10-Pan_48_LEFT TCTCCGAATGATTGAGATGGATGATT Ebov-10-Pan_48_RIGHT CTCAGTCTGTCCAAAACCGGTG 2 100µM
Ebov-10-Pan_48_LEFT_alt1 TCTCCGAATGATTGGGATGGATGATT     2 100µM
Ebov-10-Pan_49_LEFT GATATCTTTTCACGCACGCCGA Ebov-10-Pan_49_RIGHT CCACCTGGTTGCTTTGCATTTG 1 100µM
Ebov-10-Pan_49_LEFT_alt1 GATATCTTTTCACGCACGCCCA Ebov-10-Pan_49_RIGHT_alt1 CCACCAGGTTGCTTTGCATTTG 1 100µM
Ebov-10-Pan_50_LEFT TCAAAGTGTTTTGGCTGAAACCCT Ebov-10-Pan_50_RIGHT TCCTGAGTAATGTGAAGGGGTCA 2 100µM
Ebov-10-Pan_50_LEFT_alt1 TCAAAGTGGTTTGGCTGAAACCCT Ebov-10-Pan_50_RIGHT_alt1 TCCTGAGTAATGTGAAGGAGTCA 2 100µM
Ebov-10-Pan_51_LEFT AACAGTGACTTGCTAATAAAACCATTTTTG Ebov-10-Pan_51_RIGHT AAATACTGAGCTGGTACTTCCCG 1 100µM
Ebov-10-Pan_51_LEFT_alt1 AACAGTGACTTGCTAATAAAGCCATTTTTG     1 100µM
Ebov-10-Pan_51_LEFT_alt2 AACAGTGATTTGCTAATAAAACCATTTTTG     1 100µM
Ebov-10-Pan_52_LEFT AATCGTGCTCACCTTCATCTAACT Ebov-10-Pan_52_RIGHT CCCAAAACTGTACAGAAGTCCTATCT 2 100µM
Ebov-10-Pan_53_LEFT ACAGACCCAATTAGCAGTGGAGA Ebov-10-Pan_53_RIGHT ACAATTGTTCCGCGATTAATTATCCAT 1 100µM
Ebov-10-Pan_53_LEFT_alt1 ACAGACCCAATTAGCAGCGGAGA Ebov-10-Pan_53_RIGHT_alt1 ACAATTGTTCCGCGATTAATTATCCACT 1 100µM
Ebov-10-Pan_54_LEFT TCTCAGATGCGGCCAGGTTATT Ebov-10-Pan_54_RIGHT TGACCATCACTGTTGTTTGTGCT 2 100µM
Ebov-10-Pan_54_LEFT_alt1 TCTCAGATGCGGCCAGATTATT     2 100µM
Ebov-10-Pan_55_LEFT TGGAGGAGCAGACACAGAAACA Ebov-10-Pan_55_RIGHT ATGACGTTAATTGGCGTGTCCC 1 100µM
Ebov-10-Pan_55_LEFT_alt1 TGGAGGAGCAGGCACAGAAACA Ebov-10-Pan_55_RIGHT_alt1 ATGACGTCAATTGGCGTGTCCC 1 100µM
Ebov-10-Pan_55_LEFT_alt2 TGGAGAAGCAGGCACAGAAACA Ebov-10-Pan_55_RIGHT_alt2 ATGACGTTAATTGGCGCGTCCC 1 100µM
Ebov-10-Pan_56_LEFT CTCACACCGTCTAGTCCTACCT Ebov-10-Pan_56_RIGHT TTTGACATAACAGGTAGAAGCATCCT 2 100µM
Ebov-10-Pan_56_LEFT_alt1 CTCGCACCGTCTAGTCCTACCT     2 100µM
Ebov-10-Pan_56_LEFT_alt2 CTCACATCGTCTAGTCCTACCT     2 100µM
Ebov-10-Pan_57_LEFT ACACGCTAGCTACTGAGTCCAG Ebov-10-Pan_57_RIGHT ATTGGCTTAATTAAATAACCAGTGGCA 1 100µM
Ebov-10-Pan_58_LEFT TGAAAGCAGTGGTCCTTAAAGTCT Ebov-10-Pan_58_RIGHT TGCTCTAAGATGTGCTAAGTGCTG 2 100µM
    Ebov-10-Pan_58_RIGHT_alt1 TGCTCTAAGATGTGCCAAGTGCTG 2 100µM
Ebov-10-Pan_59_LEFT CGTCGATTCAAAAAGAGGTCCACT Ebov-10-Pan_59_RIGHT TCAGAAGCCCTGTCAGCCTTTC 1 100µM
Ebov-10-Pan_60_LEFT AGATTGCAATTGTGAAGAACGTTTCT Ebov-10-Pan_60_RIGHT AGAGTGCAGAGTTTATTATGTTGCGT 2 100µM
Ebov-10-Pan_61_LEFT TCACAATGCAGCATGTGTGACA Ebov-10-Pan_61_RIGHT AGGTATTTCTGATTTTACAGTCCTGCC 1 100µM
    Ebov-10-Pan_61_RIGHT_alt1 AGGTATTTATGATTTTACAGTCCTGCC 1 100µM
    Ebov-10-Pan_61_RIGHT_alt2 AGGTATTTCTGATTTTACAGTCATGCC 1 100µM
Ebov-10-Pan_62_LEFT CCTGTCAGATGGAATAGTGTTTTGGT Ebov-10-Pan_62_RIGHT AATTTTTGTGTGCGACCATTTTTCC 2 100µM

NOTE: Primers need to be used at a final concentration of 0.015µM per primer. In this case, Pool 1 has 101 primers in it so the requirement is 3.8µL of 10µM primers Pool 1 per 25µL reaction. Pool 2 has 106 primers so needs 4.0µL of 10µM primers Pool 2 per 25µL reaction. For other schemes, adjust the volume added appropriately.

  1. Set up the amplicon PCR reactions as follows in 0.5mL thin-walled PCR or strip-tubes:

    Reagent Pool 1 Pool 2
    NEB Q5 Polymerase 2X MasterMix 12.5µL 12.5µL
    Primer Pool 1 or 2 (10µM) 3.8µL 4.0µL
    Water 6.2µL 6.0µL
    TOTAL 22.5µL 22.5µL

NOTE: This should be carried out in the mastermix hood and cDNA should not be taken anywhere near the mastermix hood at any stage.

  1. In the TEMPLATE HOOD add 2.5µL of cDNA to each Pool1 and Pool2 reaction mix and mix well.

  2. Pulse centrifuge the tubes to remove any contents from the lid.

  3. Set up the cycling conditions as follows:

    Step Temperature Time Cycles
    Heat Activation 98°C 30 seconds 1
    Denaturation 98°C 15 seconds 25-35
    Annealing 65°C 300 seconds 25-35
    Hold 4°C Indefinite 1

NOTE: Cycle number should be 25 for Ct18-21 up to a maximum of 35 cycles for Ct 35

  1. Clean-up the amplicons using the following protocol in the TEMPLATE HOOD:

    1. Combine the entire contents of “Pool1” and “Pool2” PCR reactions for each biological sample into to a single 1.5mL Eppendorf tube.

    2. Mix sample gently, avoid vortexing.

    3. Ensure Aline beads are well resuspended by thoroughly mixing prior to addition to the sample. Mixture should be a homogenous brown colour.

    4. Add an equal volume of Aline beads to the tube and mix gently by either flicking or pipetting. This should be approximately 50µL, so add 50µL of beads.

    5. Pulse centrifuge the tubes to remove any beads or solution from the lid or side of the tube.

    6. Incubate for 5 mins at RT.

    7. Place on magnetic rack and incubate for 2 mins or until the beads have pelleted against the magnet and the solution is completely clear.

    8. Carefully remove and discard the solution, being careful not to displace the bead pellet.

    9. Add 200µL of room-temperature 70% ethanol to the pellet.

    10. Carefully remove and discard ethanol, being careful not to displace the bead pellet.

    11. Repeat steps i to j to wash the pellet again.

    12. Briefly pulse centrifuge the pellet and carefully remove as much ethanol as possible using a 10µL tip.

    13. Allow the pellet to dry for 1 mins, being careful not to overdry (if the pellet starts to crack then it is too dry).

    14. Resuspend pellet in 30µL of water, and incubate for 2 mins.

    15. Place on magnet and CAREFULLY remove water and transfer to a clean 1.5mL Eppendorf tube. MAKE SURE that no beads are transferred into this tube. In some cases a pulse centrifugation can be used to pellet residual beads.

    16. Quantify the amplicons pools using the Quantus Fluorometer following ONE dsDNA protocol.

Part 3: Quantus Quantification of Amplicon Pools

  1. Set up the required number of 0.5mL tubes samples.

NOTE: Use only thin-wall, clear, 0.5mL PCR tubes.

  1. Label the tube lids. Do not label the side of the tube as this could interfere with the sample reading.

  2. Add 199µL ONE dsDNA dye solution to each tube.

  3. Add 1µL of each user sample to the appropriate tube.

NOTE: Use a P2 pipette for highest accuracy.

  1. Mix each sample vigorously by vortexing for 3–5 seconds.

  2. Allow all tubes to incubate at room temperature for 2 minutes before proceeding.

  3. On the Home screen of the Quantus Fluorometer, select Protocol, then select ONE DNA as the assay type.

NOTE: If you have already performed a calibration for the selected assay you can continue, there is no need to perform repeat calibrations when using ONE DNA pre diluted dye solution. If you want to use the previous calibration, skip to step 11. Otherwise, continue with step 9.

  1. Add 200µL ONE dsDNA Dye solution to two 0.5mL tubes.

  2. Add 1µL Lambda DNA standard 400 ng/µL provided in the kit to one of the tube. These two tubes are the blank sample and standard required to perform the single point calibration procedure.

  3. Selection ‘Calibrate’ then ‘ONE DNA’ then place the blank sample in the reader then select ‘Read Blank’. Now place the standard in the reader and select ‘Read Std’.

  4. On the home screen navigate to ‘Sample Volume’ and set it to 1 ul then ‘Units’ and set it to ng/µL.

  5. Load the first sample into the reader and close the lid. The sample concentration is automatically read when you close the lid.

  6. Repeat step 12 until all samples have been read.

  7. The value displayed on the screen is the dsDNA concentration, carefully record all results in a spreadsheet or laboratory notebook.

Part 4: Barocoding and adaptor ligation: One-pot protocol.

NOTE: This is a ‘one-pot ligation’ protocol for native barcoded ligation libraries. We have seen no reduction in performance compared to standard libraries, and is made faster by using the Ultra II® ligation module which is compatible with the Ultra II® end repair/dA-tailing module removing a clean-up step. If you have the time I would recommend using the double incubation times in blue, if you are in a hurry the times in red are a good compromise between speed and efficiency.

  1. Set up the following end-prep reaction for each biological sample:

    DNA (20 ng) 16.7µL
    Ultra II End Prep Reaction Buffer 2.3µL
    Ultra II End Prep Enzyme Mix 1µL
    Total 20µL

NOTE: Quantity of amplicons can vary from 10-50ng, any more than this and the molarity of DNA ends will be too high for efficient barcoding. You need to have 6 samples per native barcoded library to have sufficient material at the end.

  1. Incubate at RT for 20 mins then 65°C for 10 mins

  2. Place on ice for 30 secs

  3. Add the following directly to the previous reactions:

    NBXX barcode 2.5µL
    Ultra II Ligation Master Mix 22.5µL
    Ligation Enhancer 0.7µL
    Total 45.7µL

NOTE: Use a SINGLE barcode per biological sample.

  1. Incubate at RT for 30 mins, 70°C for 10 mins then place on ice.

NOTE: This is to inactivate the DNA ligase to prevent barcode crossover.

  1. Pool all barcoded fragments together into a clean 1.5 ml Eppendorf tube

  2. Add 45.7µL Aline beads per sample.

  3. Incubate for 5 mins.

  4. Place on a magnet rack for 2 mins or until clear.

  5. Remove solution.

  6. Add 200µL 70% ethanol to the tube still on the magnetic rack.

  7. Remove and discard ethanol without disturbing the pellet.

  8. Repeat steps 11 and 12.

  9. Spin down and remove residual 70% ethanol and air dry for 1 min.

  10. Resuspend in 31µL EB.

  11. Incubate off the magnetic rack for 2 mins.

  12. Replace on magnetic rack.

  13. Wait until clear and then carefully remove solution and transfer to a clean 1.5mL Eppendorf tube.

  14. Remove 1µL and assess concentration by Quantus as described in previous section.

  15. Set up the following adapter ligation reaction:

    Cleaned-up barcoded amplicon pools (~60ng) 30µL
    NEBNext Quick Ligation Reaction Buffer (5X) 10µL
    AMII adapter mix 5µL
    Quick T4 DNA Ligase 5µL
    Total volume 50µL
  16. Incubate at RT for 30 mins.

  17. Add 50µL Aline beads

  18. Incubate for 5 mins

  19. Place on a magnetic rack until clear

  20. Remove supernatant

  21. Add 200µL SFB and resuspend by flicking

CAUTION: do not use 80% ethanol

  1. Place on magnetic rack until clear

  2. Remove supernatant

  3. Repeat SFB wash

  4. Spin down and remove residual SFB

  5. Add 15µL EB and resuspend by flicking

  6. Incubate at RT for 2 mins.

  7. Place on magnetic rack.

  8. Carefully transfer solution to a clean 1.5mL Eppendorf tube.

  9. Remove 1µL and assess concentration by Quantus (wait until beads have settled before measuring).

NOTE: Library can be now be stored at 4°C if required, but for best results it would be best to proceed immediately to sequencing.

Part 5: Priming and loading the SpotON flow cell

  1. Thaw the following at RT before placing on ice:
    • Sequencing buffer (SQB)
    • Loading beads (LB)
    • Flush buffer (FLB)
    • Flush tether (FLT)
  2. Add 30 ul FLT to the tube of FLB and mix well.

  3. Flip back the MinION lid and slide the priming port cover clockwise so that the priming port is visible.

IMPORTANT: Care must be taken when drawing back buffer from the flow cell. The array of pores must be covered by buffer at all times. Removing more than 20-30µL risks damaging the pores in the array.

  1. After opening the priming port, check for small bubble under the cover. Draw back a small volume to remove any bubble (a fewµLs):
    • Set a P1000 pipette to 200µL
    • Insert the tip into the priming port
    • Turn the wheel until the dial shows 220-230µL, or until you can see a small volume of buffer entering the pipette tip.
  2. Load 800µL of FLB plus FLT into the flow cell via the priming port, using the dial-down method described in step 5, avoiding the introduction of air bubbles.

  3. Wait for 5 minutes.

  4. In a new tube prepare the library dilution for sequencing:

    Reagent Volume
    SQB 37.5µL
    LB 25.5µL
    Library (~30ng) 12µL
    Total 75µL
  5. Gently lift the SpotON sample port cover to make the SpotON sample port accessible.

  6. Load 200µL of the priming mix into the flow cell via the priming port (NOT the SpotON sample port), avoiding the introduction of air bubbles.

  7. Mix the prepared library gently by pipetting up and down just prior to loading.

  8. Add 75µL of the prepared library to the flow cell via the SpotON sample port in a dropwise fashion. Ensure each drop siphons into the port before adding the next.

  9. Gently replace the SpotON sample port cover, making sure the bung enters the SpotON port, close the priming port and replace the MinION lid.

  10. Double–click the MinKNOW icon located on the desktop to open the MinKNOW GUI.

  11. If your MinION was disconnected from the computer, plug it back in.

  12. Choose the following flow cell type from the selector box:

    • FLO-MIN106 : R9.4.1 flowcell
  13. Then mark the flow cell as Selected.

  14. Click the New Experiment button at the bottom left of the GUI.

  15. On the New experiment popup screen, select the running parameters for your experiment from the individual tabs:

    • Experiment
      Name the run in the experiment field, leave the sample field blank.
    • Kit
      Selection LSK109 as there is no option for native barcoding (NBD104)
    • Run Options
      Set the run length, usually 1-2 hours.
    • Basecalling
      Leave basecalling turned on and check the HAC (high accuracy model) is selected
    • Output
      The number of files that MinKNOW will write to a single folder. By default this is set to 4000
  16. Click Start run.

  17. Allow the script to run to completion.

  18. The MinKNOW Experiment page will indicate the progression of the script; this can be accessed through the Experiment tab that will appear at the top right of the screen

  19. Monitor the Message panel on the right hand side for errors.